

0040-4039(94)01718-2

1,3-Diastereocontrol with Bromoallenes. Synthesis of Enantiomerically Pure β -Branched α -Amino Acids

Fabiana D'Aniello^a, André Mann^{a*}, Maurizio Taddei^b and Camille-Georges Wermuth^a

a. Laboratoire de Pharmacochimie Moléculaire, Centre de Neurochimie du CNRS, 5, rue B. Pascal, F-67084 Strasbourg, France.b. Dipartimento di Chimica Organica "Ugo Schiff", Università di Firenze, via G. Capponi 9, 1-50121, Firenze, Italy.

Abstract: Bromoallenes 3a and 3b derived from (D)-Scrine undergo S_N2' alkylation with organo copper reagents to give alkynyl amino alcohol derivatives. These compounds can be further transformed into branched enantiomerically enriched α -amino acids as, for example (L)-Isoleucine and (L)-Alloisoleucine.

During the last decade the SN2' substitution in allylic systems with organometallic reagents was extensively studied.¹⁻³ This kind of reaction, performed on allenic substrates remained relatively unexplored, excepted for the pioneering work of Corey on alkylation of simple bromoallenes.⁴⁻⁶ As we were embarked in the preparation of B-substituted amino acids,⁷ we decided to investigate the regio- and diastereoselectivity of the SN2' substitution in homochiral bromoallenes **3a** and **3b**, derived from (D)-Serine, where the 1, 3 oxazolidine ring behaves as a synthetic equivalent of an α amino acid.⁸ It was anticipated that if appropriate SN2' conditions were found and the displacement followed the *anti*-rule in respect to the allenic leaving group,⁴ a predictable 1,3-transfer of chirality would occur. Therefore, to make such a reaction of practical use, we needed to control the regiochemistry of the reaction and the degree of the 1,3-diastereocontrol. In this letter, we present our result relative to these questions, together with immediate application to the synthesis of homochiral β -branched α -amino acids. The preparation of bromoallenes **3a** and **3b** starting from the configurationally stable aldehyde 1^{9,10} is depicted in scheme 1.

Reagents: a. LiC=CSiMe₃, HMPA; b. NH₄F, THF; c. MgBrC=CSiMe₃, CuI; d. MsCl, TEA, CH₂Cl₂; e. CuBr, LiBr; f. see Table.

Scheme 1

The addition of lithiated trimethylsilylacetylene in the presence of HMPA gave the anti adduct 2a, whereas the reaction of 1 with the magnesium anion of trimethylsilylacetylene in THF, in the presence of CuI, gave the syn adduct 2b.¹¹ The alkynols 2a and 2b were converted, through the corresponding mesylates, into bromoallenes 3a and 3b using Li₂CuBr₂.¹²According to earlier reports,¹³⁻¹⁶ Li₂CuBr₂ displaces the mesylate in an *anti* SN² fashion to produce enantiomerically pure bromoallenes 3a and 3b. Thus in an exploratory step a number of organocuprates were reacted with allenes 3a and 3b, in order to find out the best conditions which gave the major amount of the SN² over the SN² substitution (Table 1). We discovered that inverse addition of organocuprates to the bromoallenes 3a gave far better results in terms of yields and regioselectivity. Surprisingly, this experimental procedure has not been considered before. The Gilman cuprates (entries 1, 2, 5, 6, 9 and 10) and the higher order cuprates (entries 4, 8, and 12) gave the alkynes compounds 4a, 5a and 6a as main products together with minor amounts of the substituted allenes 7a, 8a and 9a, whereas the lower order cyanocopper reagents gave no reaction, in contrast to previous reports (entries 3, 6, and 9).^{4,5} With regard to

Entry	Reagents	Ratio Alkyne/Allene ^a	Overall yield% ^b	Yield of alkyne% ^C
1	MeCuMgBr ₂ . LiBr	90 : 10d	90	72
2	Me2CuILi2	60 : 40 ^d	70	37
3	MeCuCNLi	no reaction	-	-
4	Me2CuCNLi2	90:10 ^d	74	55
5	BuCuMgBr ₂ . LiBr	85 : 15 ^e	85	65
6	Bu2CuILi2	95 : 5 ^e	70	60
7	BuCuCNLi	no reaction	-	-
8	Bu2CuCNLi2	95 : 5 ^e	76	57
9	PhCuMgBr2.LiBr	80 : 20 ^f	65	45
10	Ph2CuILi2	95 : 5 ^f	72	62
11	PhCuCNLi	no reaction	-	-
12	Ph2CuCNLi2	95 : 5f	60	47

Table: Results of the reaction of various organocopper reagents with bromoallene 3a.

a.Determined by ¹H NMR (200 MHz, CDCl₃) on the crude at 50° to avoid the signals du to rotamers; b. Yield of the mixture alkynes and allenes; c. isolated yield of the alkynes; d. ratio 4a / 7a; e. ratio 5a / 8a; f. ratio 6a / 9a.

the regioselectivity of the reaction, it may be assumed that the heteroatoms in the oxazolidine ring contributed to anchor the organometallic reagent, allowing a regioselective delivery of the nucleophilic group. From a preparative point of view, the allenic by-products can be easily separated by column chromatography. The obtained alkynes are single products as it appears in ¹H and ¹³C NMR spectroscopy, confirming an *anti* selectivity in the approach of the cuprate to the allenic double bond. ¹⁷ The complete diastereocontrol in this case allows the preparation of the possible isomers of these compounds. The divergence of chirality realized during the addition of the acetylenic derivative to the aldehyde is propagated during the formation of the bromoallenes and during the alkylation reaction. This sequence of two contiguous anti S_N2' reactions gives a result which is analogous to a *syn* ipso S_N reaction on the propargylic mesylates of the **2a** and **2b**.

The enantiomeric oxazolidines 4a and 4b can be easily transformed into β -branched α -amino acids. An example of the elaboration of this structure was realised converting 4a and 4b into (L)-isoleucine and (L)-alloisoleucine respectively, in order to carry out a reliable chemical correlation.¹⁸ Hydrogenation of the triple bonds of compounds 4a and 4b, with subsequent ring opening of the oxazolidine in mild acidic conditions followed by oxidation of the primary alcohol with PDC in DMF gave rise to N-Boc isoleucine 10a and alloisoleucine 10b in good overall yields (Scheme 2). Products 10a and 10b match the optical rotations of the authentic samples^{19,20} and the corresponding esters 11a-11b were up to 95 % pure as shown by ¹³C NMR spectroscopy, inspecting the signals for C(2), C(4) and C(6).²¹ It must be emphasized that starting from (L)-serine and following the same procedure the corresponding unnatural isoleucines can be prepared.

Reagents: a. Me₂CuCNLi₂, THF, -78°C; b. PtO₂, H₂, McOH; c. PPTS, EtOH, reflux; d. PDC, DMF; e. Me₃SiCHN₂. Scheme 2.

In summary we have shown that diastereomeric bromoallenes may be used as relay between propargyl alcohols and propargyl alkyls with retention of configuration. Accordingly with the reported examples the further elaboration of the triple bond can constitute a general protocol for the synthesis of substituted α -amino acids.²²

Acknowledgment We thank Eli Lilly for a post-doctoral grant to Fabiana d'Aniello.

References and Notes

- 1. Lipschutz, B. H. Synlett, 1990, 119.
- 2. Yanagisawa, A.; Nomura, N.; Noritake, Y.; Yamamoto, H. Synthesis 1991, 1130.
- 3. Arai, M.; Kawasuji, T.; Nakamura, E. J. Org. Chem. 1993, 58, 5121.
- 4. Corey, E. J.; Boaz, N. W. Tetrahedron Lett. 1984, 25, 3059.
- 5. Caporusso, A. M.; Polizzi, C.; Lardicci, L. J. Org. Chem., 1987, 52, 3920.
- For an excellent review on allene chemistry see: "Allenes in Organic Chemistry" Schuster, H. F., Coppola, C. M. John Willey & Sons, Inc.: New York 1986.

- Jako, I.; Uiber, P.; Mann, A.; Wermuth, C. G.; Boulanger, T.; Nordberg, B.; Evrard, G.; Durant, F. J. Org. Chem. 1991, 56, 5729.
- 8. Muller, M.; Mann, A.; Taddei, M. Tetrahedron Lett. 1993, 34, 3289.
- 9. Garner, P.; Park, J. M. J. Org. Chem. 1990, 55, 3772.
- 10. McKillop, A.; Taylor, R. J. K.; Watson, J. R.; Lewis, N. Synthesis 1994, 31
- 11. Herold, P. Helv. Chim. Acta 1988, 71, 354.
- 12. Elsevier, C. J.; Vermeer, P.; Gedanken, A.; Runge, W. J. Org. Chem. 1985, 50, 364.
- 13 Elsevier, C. J.; Bos, H. J. T.; Verneer, P.; Spek, A. L.; Kroon, J. J. Org. Chem. 1984, 49, 379.
- 14 Elsevier, C. J.; Vermeer, P. J. Org. Chem. 1989, 54, 3726.
- 15. Grese, T. A.; Hutchinson, K. D.; Overman, L. O. J. Org. Chem. 1993, 58, 2468.
- 16. Feldman, K. S.; Mechem, C. C.; Nader, L. J. Am. Chem. Soc. 1982, 104, 4011.
- Typical experimental procedure (entry 4) for the preparation of 4a: To a mixture of CuCN (145 mg, 1.6 mmol, 5 eq.) in anhydrous THF (5 ml) was added at -78°C a solution of MeLi (1.6 M in Et2O solution, 2 mL, 3.2 mmol, 10 eq). After 30 min stirring, the formed organocuprate is slowly transferred via a cannula to a solution of bromoallene 3a (100 mg, 0.31 mmol) in THF (4 mL). After completion of the addition, the reaction mixture was maintained at -78°C for 5 min and allowed to warm to room temperature. After 1 h, the reaction is quenched with saturated NH4Cl and extracted with ether (3x20 mL). The organic layer was dried, concentrated and purified by column chromatography on silica gel eluting with hexane/ether: 9/1, to afford pure alkyne 4a as an oil (56 mg, 72%). ¹H NMR (200 MHz, CDCl3 50°C) δ 1.16 (d, 3H, J 7.1 Hz, 1.50 (s, 9H), 1.61 (s, 6H), 2.02 (d, 1H, J 2.5Hz), 3.21 (bs, 1H), 4.03 (m, 3H); ¹³C NMR (50 MHz, CDCl3 50°C) δ 3.3; 14.6; 26.2; 27.9; 28.5; 59.9; 64.7; 69.6; 79.9; 81.2; 94.1.
- 18. Hasegawa, H.; Araï, S.; Shinohara, Y.; Baba, S. J. Chem Soc. Perkin I 1993, 489
- For 10a [α]D +2.7 (c=2, AcOH). The reported value for N-Boc-(L)-isoleucine is [α]D +3.1 (c=2, AcOH): Anderson, G. W.; McGregor, A. C. J. Am. Chem. Soc. 1957, 79, 6180.
- 20. For 10b [α]_D +6.1 (c=2, EtOH). The reported value for N-Boc-(L)-alloisoleucine is [α]_D +6.3 (c=2, EtOH): Jorgensen, E. C.; Rapaka, S.R.; Windridge, G. C. J. Med. Chem. 1971, 14, 899.
- 21. Selected analytical data for compound 11a: ¹³C NMR (50 MHz, CDCl₃ 50°C) δ 11.3; 15.4 (C₆); 25.2 (C₄); 28.3; 38.1; 51.5; 58.2 (C₂); 79.7; 155.4; 172.6.
 12b: ¹³C NMR (50 MHz, CDCl₃ 50°C) δ 11.5; 14.5 (C₆); 26.2 (C₄); 28.3; 37.8; 51.7; 57.3 (C₂); 79.7; 155.6; 173.0.
- 22. Duthaler, R. Tetrahedron 1994, 50, 1539 and references cited therein.

(Received in France 29 June 1994; accepted 28 August 1994)